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Abstract. Starting from plysical laws a four-dimensional nonlinear model for mecano-hydraulic servomechan-
isms is deduced. The stability of its equilibria is analysed using a theorem of Lyapunov and Malkin to handle the
critical case due to the presence of zero in the spectrum of the matrix of the linear part around equilibria. Stability
diagrams are drawn and simulation results are presented through phase diagrams.
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1. Introduction

Hydraulic servomechanisms are widely used in industries where heavy objects are manip-
ulated or large forces and torques at high speeds are exerted. Features such as their large
processing force and stiffness, good positioning and high payload capabilities, good power-
to-weight ratio make this type of actuation systems appropriate for high-power industrial
machinery such as positioning of aircraft control surfaces, position control of military gun
turrets and antennas, material handling, construction, mining and agricultural equipment. The
demanding performance specifications for such applications are high-bandwidth implying
fast response time, high-accuracy and high-fidelity control. Such technical challenges have
led researchers to examine how to improve hydraulic servomechanisms design and related
synthesis. Among the numerous issues in the field we have to cite here contributions con-
cerning: design of observers [1–3], feedback linearisation [4–6], feedback stabilisation [7],
high-bandwidth control [8], robust control and neuro-fuzzy control [9, 10], absolute stable
synthesis [11].

The sine-qua non of a functional system is stability; it concerns the basis of the system
approach. Historically, stability of hydraulic servomechanisms has been studied using Taylor-
type linearisation of flow equations [12–14] and harmonic balance method applied to special
nonlinearities as saturation, dead band; see, for instance [15]. Generally speaking, the earliest
method available in the study of linear systems was that of Routh and Hurwitz, where the
stability of equilibrium points is ascertained by examining the coefficients of the characteristic
equation associated to a linear time-invariant system, without having to find its roots. Then,
works of Nyquist, Black and Bode in the 1930s laid the foundations for linear analysis in the
frequency domain. But hardly about 30 years later the same progress takes place in nonlinear
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frequency analysis, one of the most important contribution being the discovery of the now
famous criterion of Popov (see [16]).

Let us mention, in this context of hydraulic-servomechanism stability analysis, the invest-
igation of critical cases, when stability is lost as some parameters vary. While in some cases
Hopf bifurcations of equilibriua to limit cycles are present [17–19] there are also cases when
the boundary of stability is safe [20].

An important problem for the analysis is finding a representative model of the physical
system (what is meant by a ‘representative model’ is still open to debate in the field). This
model is the result of a trade-off: to be complex enough to describe the physical behaviour of
the system and simple enough not to compromise a qualitative analysis approach. Satisfying
these rather contradictory requirements assumes the following steps: (a) derivation of a model
that is as complex as possible in accordance with physical laws and designing constraints; (b)
a certain adjustement of the developed model to allow the mathematical apparatus to provide
system synthesis and analysis; (c) stability analysis providing design and optimisation rules in
the theoretical framework; (d) validation of theoretical results by simulation and experiments
(see also [21]).

To meet these goals, the paper is organised as follows. In Section 2, following [12] and
[22], a mathematical model for a hydraulic servomechanism is introduced. In Section 3 the
Lyapunov stability of equilibrium points is analysed. Diagrams for the stability regions in the
space of two parameters and simulations for the solutions are presented in Section 4. A final
section is devoted to concluding remarks.

2. A mathematical model for a hydraulic servomechanism

The foundations for modeling a hydraulic servomechanism were laid down in [23] and com-
pleted by important contributions in the following years [12–14].

A hydraulic servomechanism is in fact a valve-piston combination (Figure 1a). A thor-
ough analysis of this combination to get dynamic performance is based on the pressure-flow
equation of the hydraulic-control valve and the continuity equation (see [23]).

The valve considered in Figure 1b is an ideal ‘two-land-four-way’ [12] spool valve. An
ideal valve is defined (see [15]) as one with the following properties:
a) the geometrical dimensions of the valve are symmetrical with respect to the axes X and Y ;
b) the hydraulic conductances of the sleeve ports are the same for the same relative spool-
sleeve displacements σ ;
c) zero radial clearance δr and no overlap or underlap of the ports are postulated; also no inner
pressure drops or losses in value occur;
d) if pa is the supply pressure, we have 0 < pi < pa , i = 1, 2 (see Figure 1b) (this means
that the pressure in each chamber of the cylinder does not saturate or cavitate) and the flow
through the valving orifices does not saturate.

An algebraic sign convention is chosen: positive for the incoming flow in the cylinder
and negative for the outgoing flow. The σ -dependent port areas ai(σ ), i = 1, 2, 3, 4 are also
related to σ by a sign convention:

σai(σ ) > 0 ∀σ �= 0, i = 1, 2, 3, 4 (2.1)
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Figure 1. The model of a hydraulic servomechanism.
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and a(σ ) = 0 if and only if σ = 0. Let Gi(σ ), i = 1, 2, 3, 4, stand for the hydraulic
conductances of the four ports

Gi(σ ) = cdi
ai(σ )

√
2

ρ
, (2.2)

where cdi
are the discharge coefficients and ρ is the mass density of the hydraulic fluid. Then

the following equations for the flow through the valving ports can be written:

Q1 = G1(σ )
√

pa − p1, Q2 = −G2(σ )
√

p2, if σ > 0,

Q3 = −G3(σ )
√

pa − p2, Q4 = G4(σ )
√

p1, if σ < 0.
(2.3)

By hypothesis (a) (indeed, great care is taken during manufacture to ensure that orifices are
matched and symmetrical) we have

cd1 = cd2 = cd3 = cd4 := cd, G1(σ ) = G2(σ ) = G3(σ ) = G4(σ ) := G(σ) (2.4)

and, by (2.1), σG(σ ) > 0 ∀σ �= 0.
The hydraulic-servomechanism model we consider was already introduced before in [12],

[22], [7]. Because its development has not been described in full detail in the literature, we
will present some details of the derivation of the equation of the valve-controlled piston. This
equation, regarded in [24] as a nonholonomic constraint between the flow and the pressure, is
based on the fact that the flow into and out of the cylinder is described by two components, one
due to the movement of the piston and the other to compressibility effects. Denoting by Qin

and Qout the volumetric flow rates into and out of the volume V , we may give the continuity
equation

Qin − Qout = dV

dt
+ V

B

dp

dt
, (2.5)

where p is the pressure inside V and B is the bulk modulus of oil.
Let S denote the effective area of the piston and V0 the cylinder semi-volume. We first

derive the equations assuming that the hypothesis on pressure saturation in (d) is satisfied.
Using (2.1), (2.3), (2.4) and (2.5), we have that, for σ > 0, the following equations are
satisfied:


Sż + V0 + Sz

B
ṗ1 = G(σ) sgn (pa − p1)

√|pa − p1|

−Sż + V0 − Sz

B
ṗ2 = −G(σ)

√|p2|
. (2.6)

Similarly, for σ < 0,


Sż + V0 + Sz

B
ṗ1 = G(σ)

√|p1|

−Sż + V0 − Sz

B
ṗ2 = −G(σ) sgn (pa − p2)

√|pa − p2|
. (2.7)
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These two systems can be combined according to [22] as:


Sż + V0 + Sz

B
ṗ1 =

= |G(σ)| sgn [pa(1 + sgn σ ) − 2p1]
√ |pa(1 + sgn σ ) − 2p1|

2

−Sż + V0 − Sz

B
ṗ2 =

= |G(σ)| sgn [pa(1 − sgn σ ) − 2p2]
√ |pa(1 − sgn σ ) − 2p2|

2 .

(2.8)

The equations in (2.8) are very similar to the model used in [7]. In what follows we use
these strongly nonlinear equations to model a hydraulic-servomechanism system that satisfies
the hypothesis (d), stating that 0 < pi < pa , i = 1, 2. These equations include conditions to
avoid cavitation. Thus, for σ > 0, one gets



Sż + V0 + Sz

B
ṗ1 = cda(σ )

√
2

ρ

√
pa − p1

−Sż + V0 − Sz

B
ṗ2 = −cda(σ )

√
2

ρ

√
p2

(2.9)

and, for σ < 0,


Sż + V0 + Sz

B
ṗ1 = cda(σ )

√
2

ρ

√
p1

−Sż + V0 − Sz

B
ṗ2 = −cda(σ )

√
2

ρ

√
pa − p2

. (2.10)

The feedback linkage equation, generally taken as an algebraic linear equation connecting
the input variable x, the output variable z and the ‘error’ σ , σ = a1x + a2z, will be herein
given in the specific form (see [21, 25])

σ = λ(x − z), (2.11)

with λ the coefficient of the feedback linkage.
In addition to Equations (2.9) or (2.10), we have to consider also the equation of motion of

the piston assembly

mz̈ + f ż + kz = S(p1 − p2), (2.12)

where, in the case of a hydraulic servo actuating flight controls, m is the equivalent inertial
load of the primary control surface reduced to the actuator road, f is an equivalent viscous-
friction-force coefficient and k is the equivalent aerodynamic elastic-force coefficient. We will
suppose also rectangular valve ports; thus denoting by w the valve-port width, we have (see
[21, 26])

a(σ ) = wσ. (2.13)
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3. Stability of equilibrium points

We investigate now the first-order systems of differential equations equivalent to (2.9), (2.11),
(2.12) and (2.10), (2.11), (2.12), respectively. We treat the two cases separately.

For σ > 0, according to (2.9), (2.11), (2.12) and (2.13) we have the system


ż = v

v̇ = − k

m
z − f

m
v + S

m
p1 − S

m
p2

ṗ1 = Bcdwλ(x − z)

V0 + Sz

√
2

ρ
(pa − p1) − BSv

V0 + Sz

ṗ2 = −Bcdwλ(x − z)

V0 − Sz

√
2

ρ
p2 + BSv

V0 − Sz
.

(3.1)

An easy computation leads to the equilibrium points

z = z̃ = x, v = ṽ = 0, p1 = p̃1 = p̃2 + k

S
x, p2 = p̃2 (3.2)

with 0 < p̃2 < pa , 0 < p̃2 + k

S
x < pa and |x| <

V0

S
.

Next we perform a translation to zero by

y1(t) = z(t) − x, y2(t) = v(t), y3(t) = p1(t) − p̃2 − k

S
x, y4(t) = p2(t) − p̃2 (3.3)

and denote for convenience C = Bcdwλ

√
2

ρ
.

We need to investigate the stability of the zero solution for the following system of equa-
tions



ẏ1 = y2

ẏ2 = − k

m
y1 − f

m
y2 + S

m
y3 − S

m
y4

ẏ3 = − Cy1

V0 + Sx + Sy1

√
pa − k

S
x − p̃2 − y3 − BSy2

V0 + Sx + Sy1

ẏ4 = Cy1

V0 − Sx − Sy1

√
p̃2 + y4 + BSy2

V0 − Sx − Sy1
.

(3.4)

The Jacobian matrix of the terms on the right in (3.4), calculated in (y1, y2, y3, y4) = 0, is

A1 =




0 1 0 0

− k

m
−f

m

S

m
− S

m

− C

V0 + Sx

√
pa − p̃2 − k

S
x − BS

V0 + Sx
0 0

C
√

p̃2

V0 − Sx

BS

V0 − Sx
0 0




. (3.5)



Stability of equilibria in a four-dimensional nonlinear model 397

Its characteristic polynomial is Q1(λ) = λP1(λ) with

P1(λ) = λ3 + f

m
λ2 + 1

m

(
2BS2V0

V 2
0 − S2x2

+ k

)
λ + SC

m




√
p̃2

V0 − Sx
+

√
pa − p̃2 − k

S
x

V0 + Sx


 .

The coefficients of P1 are positive so, according to the well-known Routh-Hurwitz criterion,
P1 is a stable polynomial if and only if

f

m

(
2BS2V0

V 2
0 − S2x2

+ k

)
− SC




√
p̃2

V0 − Sx
+

√
pa − p̃2 − k

S
x

V0 + Sx


 > 0. (3.6)

We assume that (3.6) is satisfied and continue the study of the Lyapunov stability of the zero
solution of (3.4) following [27, Chapter IV, Sections 31–34]. First, we perform a transforma-
tion to modify (3.4) into a system having an equation having zero linear part (with respect to
zero). We consider the linear system

�̇x = A1 �x (3.7)

with A1 given in (3.5) and �x = (x1, x2, x3, x4)
T , and introduce

η = a1x1 + a2x2 + a3x3 + a4x4, (3.8)

such that η̇ = 0. A straightforward identification gives

a1 = BS

V0 − Sx




√
p̃2√

pa − p̃2 − k

S
x

− 1


 , a2 = 0,

a3 = V0 + Sx

V0 − Sx

√
p̃2√

pa − p̃2 − k

S
x

, a4 = 1.

(3.9)

If now we put y4 = y − a1y1 − a3y3, Equations (3.4) become


ẏ1 = y2

ẏ2 =
(

S

m
a1 − k

m

)
y1 − f

m
y2 + S

m
(1 + a3)y3 − S

m
y

ẏ3 = − Cy1

V0 + Sx + Sy1

√
pa − p̃2 − k

S
x − y3 − BSy2

V0 + Sx + Sy1

ẏ = Cy1

V0 − Sx − Sy1

√
p̃2 + y − a1y1 − a3y3+

+y2

(
BS

V0 − Sx − Sy1
+ a1 − a3

BS

V0 + Sx + Sy1

)
−

− a3Cy1

V0 + Sx + Sy1

√
pa − p̃2 − k

S
x − y3.

(3.10)
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Introducing ξ3 = y3 − y

1 + a3
, we eliminate y from the linear part of the first three equations

and finally transform (3.4) into


ẏ1 = y2

ẏ2 =
(

S

m
a1 − k

m

)
y1 − f

m
y2 + S

m
(1 + a3)ξ3

ξ̇3 = − Cy1

V0 + Sx + Sy1

√
pa − p̃2 − k

S
x − ξ3 − y

1 + a3
− BSy2

V0 + Sx + Sy1
−

− 1

1 + a3

[
Cy1

V0 − Sx − Sy1

√
p̃2 − a1y1 − a3ξ3 + 1 − a3

1 + a3
y+

+y2

(
BS

V0 − Sx − Sy1
+ a1 − BSa3

V0 + Sx + Sy1

)
−

− Ca3y1

V0 + Sx + Sy1

√
pa − p̃2 − k

S
x − ξ3 − y

1 + a3

]

ẏ = Cy1

V0 − Sx − Sy1

√
p̃2 − a1y1 − a3ξ3 + 1 − a3

1 + a3
y+

+y2

(
BS

V0 − Sx − Sy1
+ a1 − BSa3

V0 + Sx + Sy1

)
−

− a3Cy1

V0 + Sx + Sy1

√
pa − p̃2 − k

S
x − ξ3 − 1

1 + a3
y.

(3.11)

Recall now the definition of Lyapunov stability that we investigate: the zero solution of an
autonomous system x′ = f (x) is Lyapunov-stable if for every ε > 0 there exists δε > 0 such
that, if |x0| < δε, the (maximal) solution of the Cauchy problem x′ = f (x), x(0) = x0 is
defined for all t ≥ 0 and satisfies |x(t)| < ε ∀t > 0.

As already mentioned, we use the results from [27, Chapter IV, Section 34], namely the
Theorem of Lyapunov (see [28]) in the general form proved by Malkin; we state it only for
the autonomous case.
Theorem. Given the autonomous system of differential equations

ẋ = A x + f(x,y), ẏ = g(x, y), (3.12)

where A is a real n × n matrix, f: G1 × G2 → Rn, g: G1 × G2 → Rm are (real) analytic
functions, G1,G2 are open neighbourhoods of the origin in Rn and Rm, respectively. Suppose
that σ (A) ⊂ {z ∈ C|Re z < 0} (so A is stable), that f(0, y) = g(0, y) = 0, (∀)y ∈ G2 and
that f′(0, 0) = g′(0, 0) = 0, so the Taylor series of f and g contain no power less than two.

Then the zero solution of (3.12) is Lyapunov stable. Even more, if |x(0)|, |y(0)| are small
enough, we have lim

t→∞ xj (t) = 0, j = 1, . . . , n and lim
t→∞ yk(t) = αk, k = 1, . . . , m with

(α1, . . . , αm) ∈ G2.
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We go back to the system (3.11). Here n = 3, m = 1. If f3 and f4 denote the terms on the
right in Equations 3 and 4 of the system (3.11), we have

f3(y1, y2, ξ3, y) = ∂f3

∂y1
(0)y1 + ∂f3

∂y2
(0)y2 + f̃3(y1, y2, ξ3, y)

with

f̃3(0, 0, 0, y) = f3(0, 0, 0, y) = f4(0, 0, 0, y) = 0 (3.13)

for every y in a neighbourhood of zero. Note also that f4 has first partial derivatives vanishing
at (0, 0, 0, 0).

Applying the Theorem of Lyapunov-Malkin stated above, we conclude that the zero solu-
tion of (3.11) is stable by Lyapunov and that every solution with small enough initial condi-

tions has a limit for t → ∞ in the form (0, 0, 0, α). Here α = y(0) +
∫ ∞

0
f4 [y1(t), y2(t),

ξ3(t), y(t)] dt and, as results from the proof of the Theorem [27, pp. 115–116], the decay
to zero of y1, y2, ξ3 as t → ∞ is of exponential type. For the corresponding solutions of

(3.10), lim
t→∞ ξ3(t) = 0 and lim

t→∞ y(t) = α imply lim
t→∞ y3(t) = α

1 + a3
so, for the correspond-

ing solutions of (3.4), one obtains lim
t→∞ y1(t) = 0, lim

t→∞ y2(t) = 0, lim
t→∞ y3(t) = α

1 + a3
,

lim
t→∞ y4(t) = α − α

a3

1 + a3
= α

1 + a3
. We conclude that the equilibria of (3.2) are stable and

that, by (3.3),

lim
t→∞ z(t) = x, lim

t→∞ v(t) = 0, lim
t→∞ p1(t) = p̃2 + k

S
x + α

1 + a3
,

lim
t→∞ p2(t) = p̃2 + α

1 + a3
,

(3.14)

if (z, v, p1, p2) is a solution starting from a small neighbourhood of the equilibrium(
x, 0, p̃2 + k

S
x, p̃2

)
.

For σ < 0 we follow the same steps. From (2.11) we get the system


z1 = v

v̇ = − k

m
z − f

m
v + S

m
p1 − S

m
p2

ṗ1 = C(x − z)

V0 + Sz

√
p1 − BS

V0 + Sz
v

ṗ2 = −C(x − z)

V0 − Sz

√
pa − p2 + BS

V0 − Sz
v.

(3.15)
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It has the same equilibrium points as (3.1). Equation (3.3) gives


ẏ1 = y2

ẏ2 = − k

m
y1 − f

m
y2 + S

m
y3 − S

m
y4

ẏ3 = − Cy1

V0 + Sx + Sy1

√
y3 + p̃2 + k

S
x − BSy2

V0 + Sx + Sy1

ẏ4 = Cy1

V0 − Sx − Sy1

√
pa − p̃2 − y4 + BSy2

V0 − Sx − Sy1
.

(3.16)

The matrix of the linear part around zero is

A2 =




0 1 0 0
− k

m
− f

m
S
m

− S
m

−C
√

p̃2+ k
S x

V0+Sx
− BS

V0+Sx
0 0

C
√

pa−p̃2

V0−Sx
BS

V0−Sx
0 0




(3.17)

and its characteristic polynomial is Q2(λ) = λP2(λ),

P2(λ) = λ3 + f

m
λ2 + λ

m

(
2BS2V0

V 2
0 − S2x2

+ k

)
+ SC

m




√
p̃2 + k

S
x

V0 + Sx
+

√
pa − p̃2

V0 − Sx


 .

From the same Routh-Hurwitz criterion, P2 will be stable if and only if

f

m

(
2BS2V0

V 2
0 − S2x2

+ k

)
− SC




√
p̃2 + k

S
x

V0 + Sx
+

√
pa − p̃2

V0 − Sx


 > 0. (3.18)

If inequality (3.18) is satisfied, the stability analysis proceeds as in the case σ > 0. Consider
A2 instead of A1 in (3.7) and introduce η as in (3.8), then η̇ = 0 gives

a1 = BS

V0 − Sx




√
pa − p̃2√
p̃2 + k

S
x

− 1


 , a2 = 0, a3 = V0 + Sx

V0 − Sx

√
pa − p̃2√
p̃2 + k

S
x

, a4 = 1.

It is easy to see that, in the system that replaces (3.11), conditions (3.13) are satisfied. The
Lyapunov-Malkin Theorem ensures, as before, the Lyapunov stability of equilibria in (3.15)
and the same asymptotic behaviour.

4. Numerical results and simulations

We take the following values for the system parameters: cd = 0·6, f = 3 × 103 Ns/m,
k = 105 N/m, S = 10−3 m2, pa = 2 × 107 N/m2, B = 6 × 108 N/m2, ρ = 850 kg/m3,
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Table 1 The coordinates of seven points.

1 2 3 4 5 6 7

x [m] −0·025 −0·015 0·025 −0·025 0·025 −0·001 −0·0015

p 0·95 0·5 0·05 0·05 0·95 0·75 0·05

V0 = 3 × 10−5 m3, λ = 2/3, w = 8·5 × 10−4 m. We have the limitations |x| < 3 × 10−2 m
:= xM and |σ | < 10−3 := σM.

Introduce p ∈ (0, 1) by

p = p̃2

pa

. (4.1)

Then the stability borders are given by

g1(x, p) := 2f BS2V0 + f k
(
V 2

0 − S2x2) −
− mSC

√
pa

[
(V0 − Sx)

√
1 − 5x − p + (V0 + Sx)

√
p
]

= 0, (4.2)

g1 : (−xM, xM) × (0, 1) − {
(x, p)

∣∣ 1 − 5x − p ≤ 0
} → R, for σ > 0

and

g2(x, p) := 2f BS2V0 + f k
(
V 2

0 − S2x2
) −

− mSC
√

pa

[
(V0 − Sx)

√
5x + p + (V0 + Sx)

√
1 − p

]
= 0, (4.3)

g2 : (−xM, xM) × (0, 1) − {
(x, p)

∣∣ 5x + p ≤ 0
} → R, for σ < 0

For m = 30 kg, we have g1(x, p) > 0, g2(x, p) > 0 ∀ (x, p) in their domains, so we conclude
that the equilibria (3.2) are stable and (3.14) holds, too. This situation is presented in Figure 2
and, in Figure 3, for m = 60 kg, and x = −0·0015 m.

By use of a root-locus-type approach, the stability borders for m = 60 kg are depicted in
Figure 4. A quasi-mirror symmetry of the drawing in the pair of cases σ > 0 and σ < 0 can
be observed. The thick lines mark the definition domains of the g1(x, p), g2(x, p) maps. The
seven points described in Figure 4a, were represented on (x, p) plan, the sign ‘+’ showing the
stable equilibrium point, the sign ‘−’ showing the unstable equilibrium point and the indicator
‘c’ marks the fact that the point gives a complex value to the g(x, p) function.

Starting with the initial conditions z(0) = x − σ0/λ, v(0) = 0, p1(0) = p2(0) + 5z(0),
p2(0) = qppa, q ∈ (0, 1/p), σ0 ∈ (−σM, σM), we integrate numerically the system (3.1) as
long as σ > 0, turn to (3.15) if σ < 0, coming back to (3.1) when σ > 0 and so on.

Basically, confirmation of theoretical predictions by model simulations can be an im-
possible and even unnecessary task. Owing to the intrinsic switching structure (2.9–2.10) of
our model, an extra difficulty appears: at each integration step, taking into account the sign
induced to the relative displacement σ , we observe that the values of the state variables con-
sidered as initial conditions influence the system stability. So, a rigorous prediction concerning
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Figure 2. Numerical results for the servomechanism
with m = 30 kg, x = 0·001 m, z0 = 0·0009 m, V0 =
0 m/s, p10 = 101×105 N/m2, p20 = 101×105 N/m2.

Figure 3. Numerical results for the servomechanism
with m = 60 kg, x = −0·0015 m, z0 = −0·0016 m,
V0 = 0 m/s, p10 = 100 × 105 N/m2, p20 = p10 +
0·005 N/m2.
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Figure 4. Stability borders of the four-dimensional nonlinear model of hydraulic servomechanism.

Figure 5. Time history of state variables (time in seconds).

system stability or instability of the theoretical hydraulic-servomechanism model is difficult
to be ascertained in parameter configurations such as those represented in Figure 4, the case
m = 60 kg, in which domains of stability or instability coexist.

To illustrate these difficult features, some illustrative time histories of state variables are
herein retained in Figure 5. Initial conditions relative to equilibrium point 2, with σ < 0,
σ0 = −σM/5 and q = 1·5, in the case of Figure 5a and to equilibrium point 7, with σ > 0,
σ0 = σM/10 and q = 0·5, in the case of Figure 5b are used. The first case illustrates a situation
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of instability and the second a situation of stability. The pictures remain almost unchanged
when the degree of accuracy is increased. One can easily see the effect of switching in the
phase portrait in Figure 5b, when compared with Figure 3.

Problems of the kind investigated in this paper frequently arise in the aviation industry.
Given the aviation regulations, only the fulfilment of the stability conditions in the whole
domain where (x, p) are defined, can be accepted as a preliminary condition in the synthesis
of a hydraulic servomechanism.

The existence of arbitrary initial pressures that satisfy 0 < pi(0) < pa, i = 1, 2 in various
dynamic processes in hydraulic servomechanisms has been verified by laboratory measure-
ments (see [29]). Recall that, according to [30], if one is given a value m for which stability of
equilibria is ascertained, one must have laboratory stability tests also for 2m. Some results of
such tests are to be found in [21], leading to the conclusion that dynamical stability is observed
also in the case m = 60 kg.

5. Concluding remarks

A natural setting for the investigation of various properties of a mechano-hydraulic servomech-
anism is a four-dimensional nonlinear system of ordinary differential equations.

Although not new, the detailed derivation of such a model, starting from physical prin-
ciples that govern the dynamics of the spool valve, can be considered as a contribution to the
dissemination of more accurate approaches to this class of servomechanisms.

The inherent complexity of the nonlinearities of valve-controlled hydraulic servomechan-
isms yields difficulties in finding analytical conditions that ensure the stability of equilibrium
points. The main contribution of this work is the statement of such conditions. The classical
Routh-Hurwitz criterion is combined with a theorem of Lyapunov and Malkin to handle the
critical case due to the presence of a zero eigenvalue in the spectrum of the Jacobian matrix
calculated at equilibria. As a result inequalities (3.6) and (3.18) are proved to be sufficient for
the Lyapunov stability of equilibria. We underline that these conditions must be satisfied for
all the values (x, p) that parameterize the equilibria. The designer faced with the synthesis of
a mechano-hydraulic servomechanism can regard these conditions as a reference point in the
design.

The switching-type structure of the mathematical model leads to two inequalities (already
mentioned) that ensure stability and accordingly to stability borders. The investigation of the
stability of equilibria on the boundary could be accomplished along the lines as indicated in
[31].

The same switching structure is also considered when the dynamics of the system is
simulated numerically. The resulting phase pictures show the influence of switching on the be-
havior of solutions. Similar results work for electrohydraulic servomechanisms where instead
of σ = λ(x −z) one considers, for instance, σ = kem(u−kpz) with kem as electro-mechanical
conversion gain, kp the displacement transducer gain and u the reference signal [V] (see [10,
15]). To avoid instability due to violation of the inequalities (3.6) or (3.18) or to the switching
structure, one can use a stabilizing controller. This idea will be developed in forthcoming
papers.
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